
05. Determinação das resistências internas de um amperímetro e de um voltímetro

Introdução

Os aparelhos de medida reais que podemos usar num laboratório não são aparelhos de medida ideais, e interferem no fenômeno observado. Em muitos casos precisamos levar em conta as propriedades do aparelho e sua interferência com a grandeza medida. No caso de nosso laboratório de medidas elétricas, é necessário conhecer o valor da resistência elétrica dos nossos principais aparelhos de medida, o voltímetro e o amperímetro, para que possamos ao menos estimar a sua interferência sobre a medida. O objetivo desta experiência é a determinação do valor da resistência elétrica dos aparelhos que empregaremos em nosso curso, nas suas diferentes escalas de medida.

RESPONDA: Qual é a resistência elétrica de um voltímetro ideal? E a de um amperímetro ideal? Estime o valor (isso mesmo, chute!) da resistência interna do voltímetro e do amperímetro analógicos que usamos em nosso laboratório.

série.

Considere a associação em série (Figura 1) de um voltímetro V e de um amperímetro A. Quando aplicamos uma diferença de potencial **U** aos terminais da associação de medidores flui uma corrente I através dela. Essa mesma corrente I atravessa o voltímetro e atravessa amperímetro, sendo medida:

$$I_A = I_V = I$$

Mostre que, na associação em série dos medidores, se dividirmos a tensão U_V medida pelo voltímetro pela corrente I_A medida pelo amperímetro, obteremos o valor da resistência do voltímetro:

$$R_{V} = \frac{U_{V}}{I_{A}}$$

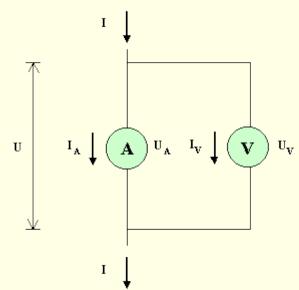


Figura 2. Voltímetro e amperímetro em paralelo.

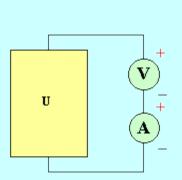
No caso da associação em paralelo (Figura 2) de um voltímetro V e de um amperímetro A, a diferença de potencial aplicada aos terminais da associação de medidores **U** é igual às diferenças de potencial U_A sobre o amperímetro e U_V sobre o voltímetro, que a mede:

$$U_A = U_V = U$$

Mostre que, na associação em paralelo dos medidores, se dividirmos a tensão **U**_V medida pelo

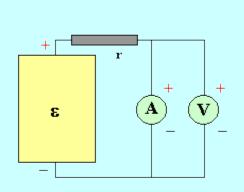
pelo amperímetro, obteremos o valor da resistência do amperímetro:

$$R_A = \frac{U_V}{I_A}$$


2: Procedimento experimental

3.1 Medição da resistência R_V do voltímetro

Conecte a combinação em série dos medidores a uma fonte de tensão adequada à escala na qual a resistência do voltímetro está sendo medida. Meça U_V e I_A em 1/3, 2/3 e 3/3 do fundo de escala do voltímetro na escala utilizada. Calcule R_V correspondente a cada uma dessas condições, com respectiva incerteza. Construa também um gráfico I x U mostrando seus resultados.


Material

fonte de tensão regulável e = V amperímetro 0 - 30,00 A (± 0,25) 0 - 10,0 A (± 0,1) 0 - 3,00 A (± 0,025) 0 - 1,00 A (± 0,01) 0 - 300,0 mA (± 2,5) voltímetro 0 - 30,00 V (± 0,25) 0 - 10,0 V (± 0,1) 0 - 10,0 V

$$\begin{aligned} I_A &= A \\ U_V &= V \end{aligned}$$

3,00 V (± 0,025) 0 - 1,00 V (± 0,01) 0 - 300,0 mV (± 2,5) cabos e grampos

 $I_A = A$ $U_V = V$

Medição da resistência R_A do amperímetro

Conecte a combinação em paralelo dos medidores a uma fonte de corrente adequada à escala na qual a resistência do amperímetro está sendo medida. Meça U_V e I_A em 1/3, 2/3 e 3/3 do fundo de escala do amperímetro na escala utilizada. Calcule R_A correspondente a cada uma dessas condições, com respectiva incerteza. Construa também um gráfico I x U mostrando seus resultados

Material

fonte de tensão regulável e = V reostato R = W amperímetro 0 - 30,00 A ($\pm 0,25$) 0 - 10,0 A ($\pm 0,1$) 0 - 3,00 A ($\pm 0,025$) 0 - 1,00 A ($\pm 0,01$) 0 - 300,0 mA ($\pm 2,5$) voltímetro 0 - 30,00 V ($\pm 0,25$) 0 - 10,0 V ($\pm 0,25$) 0 - 1,00 V ($\pm 0,01$) 0 - 300,0 mV ($\pm 2,5$) cabos e grampos