Mecânica - Equilíbrio Autores: Prof. Gil da Costa Margues e Profa. Nobuko Ueta

Experimentação

Quando levantamos um peso com a mão espalmada para cima, como mostra a figura, utilizamos o bíceps. Os ossos do antebraço e braço, úmero, rádio e ulna (ou cúbito), são os diretamente utilizados nesse movimento. Através das relações básicas do equilíbrio $\sum \vec{F} = 0$ e $\sum \vec{\tau} = 0$ podemos obter a equação necessária para calcular a força do bíceps. Na figura ao lado estão mostradas esquematicamente as forças que atuam no braço. \vec{F}_1 é a força exercida pelo úmero na junta do cotovelo, \vec{F}_2 é a exercida pelo bíceps no rádio e a \vec{F}_3 é a força peso do conjunto braço e mão. \vec{F}_4 é o peso que está sendo levantado. A força \vec{F}_3 está aplicada no centro de massa do conjunto braço e mão, que fica aproximadamente na metade do braço (metade da distância entre o cotovelo e o pulso, para dar conta da região mais gorda do braço). \vec{F}_3 pode ser estimada em 6% do peso total do indivíduo.

Os torques podem ser calculados medindo-se distâncias entre o centro do cotovelo (eixo em torno do qual o braço gira) e o ponto de aplicação de cada força. Notem a perpendicularidade entre os braços dos momentos e as forças correspondentes $sen\theta \approx 1$. Os braços dos momentos estão indicados por r_1, r_2 é a distância entre o eixo de rotação e o ponto de inserção do bíceps no rádio (aproximadamente 3cm); r_3 é a distância entre o eixo e o centro de massa do conjunto braço e mão, e r_4 é a distância entre o eixo e o centro do objeto sustentado. Note que $r_1=0$, já que o úmero se encaixa praticamente no centro de rotação do cotovelo.

$$\sum \vec{F} = 0$$

$$\vec{F}_2 - \vec{F}_1 + \vec{F}_3 + \vec{F}_4 = 0 \text{ (só os módulos)}$$

$$F_2 = \frac{r_3 F_3 + r_4 F_4}{r_2}$$

Podemos assim obter a força do bíceps nessa situação. Cuidado, quando a palma da mão estiver voltada para o outro lado, utilizamos outro conjunto de músculos.

A força do bíceps pode também ser medida com o auxílio de um dinamômetro fixo numa parede, como mostra a figura abaixo. Neste caso, note que o antebraço está apoiado sobre a mesa, de modo que \vec{F}_1 não entra no problema.

Mecânica - Equilíbrio Autores: Prof. Gil da Costa Marques e Profa. Nobuko Ueta

Também $\vec{F}_{\!\scriptscriptstyle 3}$, peso do braço, tem agora a mesma direção que $\, \vec{ au}_{\!\scriptscriptstyle 3} = 0 \, . \,$

Assim, considerando os módulos,

$$\sum \vec{F} = 0$$

$$F_2 - F_1 + F_3 + F_4 = 0$$

$$\sum \vec{\tau} = 0$$

$$r_3 F_3 + r_4 F_4 - r_2 F_2 = 0$$

$$F_2 = \frac{r_3 F_3 + r_4 F_4}{r_2}$$

se resume a:

$$x_2F_2=x_4F_4.$$

Medindo-se $x_4 \ e \ F_4$, sabendo que $x_2 = 3cm$, podemos obter F_4 .